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worldwide plastics 

production in 2017:

344 million tons*


*Association of Plastics Manufacturers

http://cityofdavis.org/
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Mass of  8.10 billion people: 
5.11 x 10^11 kilograms, 

0.51 gigatons 
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Mass of  8.10 billion people: 
5.11 x 10^11 kilograms, 

0.51 gigatons 

In 2021 humans emitted  
36.4 gigatons of  carbon 

https://www.statista.com/statistics/276629/global-co2-emissions/ 
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CO2  in the future:  
our choices 
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How does the Earth  
cope with CO2? 
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variance spectrum for human body mass
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Carbon Capture and Sequestration (JAR with Berend Smit, Curt Oldenburg, Ian Bourg), World Scientific Press, 2013. 
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MIS 18 consists of two clearly separated phases. The earlier phase
reaches its minimum of 177 p.p.m.v. just before a fast increase to the
second, a phase of rather constant CO2 concentration between 205
and 212 p.p.m.v. lasting for 20 kyr. A rapid reduction by about
30 p.p.m.v. within a few thousand years, similar to MIS 15.2 and
15.4, and a similarly rapid increase by 40 p.p.m.v. (termination
VIII) mark the beginning of the next interglacial. During the
40,000 yr of MIS 17, CO2 ranges between 215 and 240 p.p.m.v., which
is significantly lower than in other interglacials during the past
800 kyr. At the beginning of MIS 16, CO2 remains below
180 p.p.m.v. for 3 kyr, most probably reflecting more pronounced
glacial carbon storage in the ocean. During this period, CO2 falls to
its lowest value ever found in ice cores, 172 p.p.m.v. (667 kyr BP),

redefining the natural range of CO2 of the late Quaternary to about
170 to 300 p.p.m.v., before it rises at a rate of 8 p.p.m.v. kyr–1 to
190 p.p.m.v. at 665 kyr BP.

Figure 2 shows our data together with earlier results from the
Dome C (650–390 kyr BP4 and 22–0 kyr BP5), Vostok1–3 (440–
0 kyr BP) and Taylor Dome6 (60–20 kyr BP) ice cores resulting in a
composite CO2 record over eight glacial cycles. During these
800 kyr, CO2 is strongly coupled with the Antarctic temperature
(r2 5 0.82).

It was suggested earlier4 that there is a strong stationary relation-
ship between Antarctic temperature and CO2. But our data reveal a
significant deviation from this behaviour: The atmospheric concen-
tration of CO2 during MIS 17 remains significantly below the levels
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Figure 2 | Compilation of CO2 records and EPICA Dome C temperature
anomaly over the past 800 kyr. The Dome C temperature anomaly record
with respect to the mean temperature of the last millennium8 (based on
original deuterium data interpolated to a 500-yr resolution), plotted on the
EDC3 timescale13, is given as a black step curve. Data for CO2 are from Dome
C (solid circles in purple5, blue4, black: this work, measured at Bern; red open

circles: this work, measured at Grenoble), Taylor Dome6 (brown) and
Vostok1–3 (green). All CO2 values are on the EDC3_gas_a age scale26.
Horizontal lines are the mean values of temperature and CO2 for the time
periods 799–650, 650–450, 450–270 and 270–50 kyr BP. Glacial terminations
are indicated using Roman numerals in subscript (for example TI); Marine
Isotope Stages (MIS) are given in italic Arabic numerals27.
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Figure 1 | Dome C CO2 data. Black solid circles connected by a grey line: data
measured at Bern (mean of four to six samples); error bars represent 1s of
the mean (s.d.). Red open circles: data measured at Grenoble
(2s 5 3 p.p.m.v.). Blue solid circles: Dome C CO2 data published by
Siegenthaler et al.4. Green solid diamonds: control measurements with the

sublimation extraction technique. The black arrow indicates a CO2 value of
339 6 56 p.p.m.v. (s.d.), an artefact detected at a depth of 3,178.12 m (age:
783,040 yr BP). All data are plotted on the EDC3_gas_a age scale26. Glacial
terminations are indicated using Roman numerals in subscript (for example
TVIII); MIS denotes Marine Isotope Stage27.
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MIS 18 consists of two clearly separated phases. The earlier phase
reaches its minimum of 177 p.p.m.v. just before a fast increase to the
second, a phase of rather constant CO2 concentration between 205
and 212 p.p.m.v. lasting for 20 kyr. A rapid reduction by about
30 p.p.m.v. within a few thousand years, similar to MIS 15.2 and
15.4, and a similarly rapid increase by 40 p.p.m.v. (termination
VIII) mark the beginning of the next interglacial. During the
40,000 yr of MIS 17, CO2 ranges between 215 and 240 p.p.m.v., which
is significantly lower than in other interglacials during the past
800 kyr. At the beginning of MIS 16, CO2 remains below
180 p.p.m.v. for 3 kyr, most probably reflecting more pronounced
glacial carbon storage in the ocean. During this period, CO2 falls to
its lowest value ever found in ice cores, 172 p.p.m.v. (667 kyr BP),

redefining the natural range of CO2 of the late Quaternary to about
170 to 300 p.p.m.v., before it rises at a rate of 8 p.p.m.v. kyr–1 to
190 p.p.m.v. at 665 kyr BP.

Figure 2 shows our data together with earlier results from the
Dome C (650–390 kyr BP4 and 22–0 kyr BP5), Vostok1–3 (440–
0 kyr BP) and Taylor Dome6 (60–20 kyr BP) ice cores resulting in a
composite CO2 record over eight glacial cycles. During these
800 kyr, CO2 is strongly coupled with the Antarctic temperature
(r2 5 0.82).

It was suggested earlier4 that there is a strong stationary relation-
ship between Antarctic temperature and CO2. But our data reveal a
significant deviation from this behaviour: The atmospheric concen-
tration of CO2 during MIS 17 remains significantly below the levels
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Figure 2 | Compilation of CO2 records and EPICA Dome C temperature
anomaly over the past 800 kyr. The Dome C temperature anomaly record
with respect to the mean temperature of the last millennium8 (based on
original deuterium data interpolated to a 500-yr resolution), plotted on the
EDC3 timescale13, is given as a black step curve. Data for CO2 are from Dome
C (solid circles in purple5, blue4, black: this work, measured at Bern; red open

circles: this work, measured at Grenoble), Taylor Dome6 (brown) and
Vostok1–3 (green). All CO2 values are on the EDC3_gas_a age scale26.
Horizontal lines are the mean values of temperature and CO2 for the time
periods 799–650, 650–450, 450–270 and 270–50 kyr BP. Glacial terminations
are indicated using Roman numerals in subscript (for example TI); Marine
Isotope Stages (MIS) are given in italic Arabic numerals27.
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measured at Bern (mean of four to six samples); error bars represent 1s of
the mean (s.d.). Red open circles: data measured at Grenoble
(2s 5 3 p.p.m.v.). Blue solid circles: Dome C CO2 data published by
Siegenthaler et al.4. Green solid diamonds: control measurements with the

sublimation extraction technique. The black arrow indicates a CO2 value of
339 6 56 p.p.m.v. (s.d.), an artefact detected at a depth of 3,178.12 m (age:
783,040 yr BP). All data are plotted on the EDC3_gas_a age scale26. Glacial
terminations are indicated using Roman numerals in subscript (for example
TVIII); MIS denotes Marine Isotope Stage27.
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MIS 18 consists of two clearly separated phases. The earlier phase
reaches its minimum of 177 p.p.m.v. just before a fast increase to the
second, a phase of rather constant CO2 concentration between 205
and 212 p.p.m.v. lasting for 20 kyr. A rapid reduction by about
30 p.p.m.v. within a few thousand years, similar to MIS 15.2 and
15.4, and a similarly rapid increase by 40 p.p.m.v. (termination
VIII) mark the beginning of the next interglacial. During the
40,000 yr of MIS 17, CO2 ranges between 215 and 240 p.p.m.v., which
is significantly lower than in other interglacials during the past
800 kyr. At the beginning of MIS 16, CO2 remains below
180 p.p.m.v. for 3 kyr, most probably reflecting more pronounced
glacial carbon storage in the ocean. During this period, CO2 falls to
its lowest value ever found in ice cores, 172 p.p.m.v. (667 kyr BP),

redefining the natural range of CO2 of the late Quaternary to about
170 to 300 p.p.m.v., before it rises at a rate of 8 p.p.m.v. kyr–1 to
190 p.p.m.v. at 665 kyr BP.

Figure 2 shows our data together with earlier results from the
Dome C (650–390 kyr BP4 and 22–0 kyr BP5), Vostok1–3 (440–
0 kyr BP) and Taylor Dome6 (60–20 kyr BP) ice cores resulting in a
composite CO2 record over eight glacial cycles. During these
800 kyr, CO2 is strongly coupled with the Antarctic temperature
(r2 5 0.82).

It was suggested earlier4 that there is a strong stationary relation-
ship between Antarctic temperature and CO2. But our data reveal a
significant deviation from this behaviour: The atmospheric concen-
tration of CO2 during MIS 17 remains significantly below the levels
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with respect to the mean temperature of the last millennium8 (based on
original deuterium data interpolated to a 500-yr resolution), plotted on the
EDC3 timescale13, is given as a black step curve. Data for CO2 are from Dome
C (solid circles in purple5, blue4, black: this work, measured at Bern; red open

circles: this work, measured at Grenoble), Taylor Dome6 (brown) and
Vostok1–3 (green). All CO2 values are on the EDC3_gas_a age scale26.
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periods 799–650, 650–450, 450–270 and 270–50 kyr BP. Glacial terminations
are indicated using Roman numerals in subscript (for example TI); Marine
Isotope Stages (MIS) are given in italic Arabic numerals27.
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measured at Bern (mean of four to six samples); error bars represent 1s of
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sublimation extraction technique. The black arrow indicates a CO2 value of
339 6 56 p.p.m.v. (s.d.), an artefact detected at a depth of 3,178.12 m (age:
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Figure 4 | Time-series of surface forcing. a, Time series of observed spectrally
integrated (520–1,800 cm21) CO2 surface radiative forcing at SGP (in red)
with overlaid CT2011 estimate of CO2 concentration from the surface to an

altitude of 2 km (grey), and a least-squares trend of the forcing and its
uncertainty (blue). b, Power spectral density of observed CO2 surface radiative
forcing at SGP. c, As for a but for the NSA site. d, As for b but for the NSA site.
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Figure 4 | Time-series of surface forcing. a, Time series of observed spectrally
integrated (520–1,800 cm21) CO2 surface radiative forcing at SGP (in red)
with overlaid CT2011 estimate of CO2 concentration from the surface to an

altitude of 2 km (grey), and a least-squares trend of the forcing and its
uncertainty (blue). b, Power spectral density of observed CO2 surface radiative
forcing at SGP. c, As for a but for the NSA site. d, As for b but for the NSA site.
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Our CO2 waste is warming the planet by radiative forcing
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Changes in radiative forcing with time from various sources



Consequences 











“Cool” countries benefit economically with warming “Warm” countries experience cumulative losses with warming







What are the FUTURE consequences?
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Examine >600 million geolocated Tweets for  
depressive language…
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We are more likely to commit suicide when it is hot…



Which means 9,000-40,000 additional suicides

USA Mexico
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2 degrees C (IF we keep to 2C rise globally)

Migration distance to keep the same 
median temperature



2 degrees C (IF we keep to 2C rise globally)

Migration distance to keep the same 
median temperature
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Summary

• Mathematical models connect the 
atmosphere to our future changing 
climate and its consequences

• The atmosphere is changing

• The change is due to our combustion
• Radiative forcing connects the change to temperature

There are urgent consequences
• The Earth manages carbon on geological timescales
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noise-induced tipping events…  
for instance drought events causing 
sudden dieback of the Amazon 
rainforest….
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Raphson sense bifurcation tipping events
e.g.,  collapse of the thermohaline 
circulation in the Atlantic Ocean 
…a critical level in the forcing is reached. 
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Observed sea-level trends are known to arise from the combined
influences of internal variability due to natural variations aris-
ing within the climate system and the forced response (FR), de-
fined as the climate response driven by forcings external to the cli-
mate system, such as from natural (i.e., volcanic) or anthropogenic
aerosols, or from increases in greenhouse gas concentrations (14).
Studies aimed at disentangling the FR from internal variability on
regional scales have been previously attempted. In the Indo-Pacific
region, diagnostic assessments have largely attributed observed
trends to internal variability (15, 16). On a global scale, the relative
contributions of forced and internal variability remain somewhat
unclear, although many studies have concluded that altimeter-era
trends are likely dominated by internal variations (6, 14, 15, 17),
while others have suggested the possible emergence of the FR in
the Southern Ocean (7). Studies looking at regional time of emer-
gence based on multimodel archives show strong dependence on
region (2, 6) and a benefit in removing patterns of internal vari-
ability (11), but they have yet to identify a clear emergence of major
features. Considerable uncertainty surrounding these finding per-
sists, however, as contrasts within multimodel archives include both
internal variability and structural contrasts between models, with
few means of separating the two (6, 7). As such, estimates of internal
variability derived from multimodel ensembles may be inflated, as
the representation of internal variability in the archives is often poor
(18). Lastly, it is also not possible in these archives to assess the time-
varying character of the FR, since they include few ensemble
members for individual models, and it is often assumed that trends
through the 21st century are a suitable estimate, further intro-
ducing error into the estimation of FR emergence for short periods,
such as the satellite record, as discussed below.
From a purely empirical standpoint, the fact that the spatial

pattern of observed trends (Fig. 1) in many ways resembles the sea
surface temperature (SST) anomalies that accompany the El Niño–

Southern Oscillation and Pacific Decadal Oscillation (19) supports
the viewpoint that observed trends arise largely from internal var-
iability. It is also known that strong variations in those modes oc-
curred during the altimeter era (11, 20, 21), again suggesting a
strong role. A challenge for diagnostic assessments arises, however,
if the spatial pattern of internal modes resembles the pattern of
long-term change, as disentangling them during altimeter era re-
mains a challenge (21). To address this challenge, techniques for
assessing the time of emergence of climate signals from internal
variability have been explored for a range of variables, including
temperature (22), rainfall extremes (23), and sea level (6, 7). Often,
a pattern scaling approach is adopted, whereby the long-term trend,
such as spanning the 20th and 21st centuries, is used to estimate the
FR, as doing so provides a strong signal relative to the noise of
internal variability. This approach does not, however, provide a
means for estimating the time-varying character of the FR and
thereby, introduces error when applied to discrete time periods. In
the context of sea-level changes in the altimeter era, this assump-
tion is particularly problematic; strong transient changes in forcing
are known to occur during the era from changes in total anthro-
pogenic aerosol emissions, their regional distributions, and natural
forcings, such as those associated with the eruption of Mt. Pinatubo
in 1991, the effects of which persisted for at least a decade (24).
Climate models can be useful in estimating these effects; however,
multimodel archives also do not allow for direct estimation of the
FR on decadal timescales due to model structural contrasts (25).
Here, to address these challenges, an alternative approach is taken
using “large ensembles” (LEs) of climate model simulations.

Sea Level in Climate Model LEs
Climate models are powerful tools for disentangling the FR from
internal variability, and as such, they play an essential role in the
interpretation of short satellite records and the attribution of ob-
served changes (24, 25). In the past decade, multimodel archives
(27, 28) have been used extensively to address a range of climate
issues, including sea-level rise (2, 6, 14). More recently, LEs of
climate model simulations have been produced to allow for the
separation of forced and internal variability, where the FR can be
computed directly from the ensemble mean simulated trend across
a given time period, as random internal variability averages out.
LEs are created when multiple simulations using a single climate
model are driven by an estimate of imposed forcings (e.g., external
influences on climate, such as solar variability, volcanic and an-
thropogenic aerosols, and greenhouse gas emissions) initiated with
different initial conditions. Unlike multimodel archives, the use of a
single model eliminates any contribution of model structural un-
certainty to its ensemble spread. When extremely small perturba-
tions are made to the initial conditions of such simulations (for
example, with a 10−14 °C change in atmospheric temperatures),
chaotic effects lead them to fully diverge in their atmospheric in-
ternal states within a few months (26). Such variations in the cli-
mate system subsequently accompany the underlying change in
climate state arising from external forcings. When a sufficient
number of individual simulations (typically ≥ 30) are performed in
this manner, their trends can be averaged together to directly
compute the FR (26). Here, this is done with the goal of resolving
the FR in sea level across the mid-20th century (1950–1975), the
altimeter era (1993–2018), the coming decades (2020–2045), and
the long-term (1950–2100). After the FRs are determined, the
distribution of its pattern correlations with individual ensemble
members is then derived and compared with analogous distribu-
tions derived from a control (i.e., unforced) simulation. When these
distributions become statistically distinct, the FR can be concluded
to have emerged. Notably, this is a distinct and somewhat more
sensitive definition of emergence than time series-based methods
examining the magnitude of trends relative to annual mean vari-
ance (22). However, the approach used here is arguably more
suitable to the science questions pertaining to the altimeter record
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Fig. 1. Regional sea-level trends from altimetry (millimeters year−1) from
1993 to mid-2018 (A) based on annual averages of raw AVISO estimates
(https://www.aviso.altimetry.fr/en/my-aviso.html) and (B) with the global
mean rate of rise removed. Also shown in A are the boundaries for the
Pacific, Atlantic, Indian, and Southern Oceans used for defining ocean basins
as defined in this analysis.
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Observed sea-level trends are known to arise from the combined
influences of internal variability due to natural variations aris-
ing within the climate system and the forced response (FR), de-
fined as the climate response driven by forcings external to the cli-
mate system, such as from natural (i.e., volcanic) or anthropogenic
aerosols, or from increases in greenhouse gas concentrations (14).
Studies aimed at disentangling the FR from internal variability on
regional scales have been previously attempted. In the Indo-Pacific
region, diagnostic assessments have largely attributed observed
trends to internal variability (15, 16). On a global scale, the relative
contributions of forced and internal variability remain somewhat
unclear, although many studies have concluded that altimeter-era
trends are likely dominated by internal variations (6, 14, 15, 17),
while others have suggested the possible emergence of the FR in
the Southern Ocean (7). Studies looking at regional time of emer-
gence based on multimodel archives show strong dependence on
region (2, 6) and a benefit in removing patterns of internal vari-
ability (11), but they have yet to identify a clear emergence of major
features. Considerable uncertainty surrounding these finding per-
sists, however, as contrasts within multimodel archives include both
internal variability and structural contrasts between models, with
few means of separating the two (6, 7). As such, estimates of internal
variability derived from multimodel ensembles may be inflated, as
the representation of internal variability in the archives is often poor
(18). Lastly, it is also not possible in these archives to assess the time-
varying character of the FR, since they include few ensemble
members for individual models, and it is often assumed that trends
through the 21st century are a suitable estimate, further intro-
ducing error into the estimation of FR emergence for short periods,
such as the satellite record, as discussed below.
From a purely empirical standpoint, the fact that the spatial

pattern of observed trends (Fig. 1) in many ways resembles the sea
surface temperature (SST) anomalies that accompany the El Niño–

Southern Oscillation and Pacific Decadal Oscillation (19) supports
the viewpoint that observed trends arise largely from internal var-
iability. It is also known that strong variations in those modes oc-
curred during the altimeter era (11, 20, 21), again suggesting a
strong role. A challenge for diagnostic assessments arises, however,
if the spatial pattern of internal modes resembles the pattern of
long-term change, as disentangling them during altimeter era re-
mains a challenge (21). To address this challenge, techniques for
assessing the time of emergence of climate signals from internal
variability have been explored for a range of variables, including
temperature (22), rainfall extremes (23), and sea level (6, 7). Often,
a pattern scaling approach is adopted, whereby the long-term trend,
such as spanning the 20th and 21st centuries, is used to estimate the
FR, as doing so provides a strong signal relative to the noise of
internal variability. This approach does not, however, provide a
means for estimating the time-varying character of the FR and
thereby, introduces error when applied to discrete time periods. In
the context of sea-level changes in the altimeter era, this assump-
tion is particularly problematic; strong transient changes in forcing
are known to occur during the era from changes in total anthro-
pogenic aerosol emissions, their regional distributions, and natural
forcings, such as those associated with the eruption of Mt. Pinatubo
in 1991, the effects of which persisted for at least a decade (24).
Climate models can be useful in estimating these effects; however,
multimodel archives also do not allow for direct estimation of the
FR on decadal timescales due to model structural contrasts (25).
Here, to address these challenges, an alternative approach is taken
using “large ensembles” (LEs) of climate model simulations.

Sea Level in Climate Model LEs
Climate models are powerful tools for disentangling the FR from
internal variability, and as such, they play an essential role in the
interpretation of short satellite records and the attribution of ob-
served changes (24, 25). In the past decade, multimodel archives
(27, 28) have been used extensively to address a range of climate
issues, including sea-level rise (2, 6, 14). More recently, LEs of
climate model simulations have been produced to allow for the
separation of forced and internal variability, where the FR can be
computed directly from the ensemble mean simulated trend across
a given time period, as random internal variability averages out.
LEs are created when multiple simulations using a single climate
model are driven by an estimate of imposed forcings (e.g., external
influences on climate, such as solar variability, volcanic and an-
thropogenic aerosols, and greenhouse gas emissions) initiated with
different initial conditions. Unlike multimodel archives, the use of a
single model eliminates any contribution of model structural un-
certainty to its ensemble spread. When extremely small perturba-
tions are made to the initial conditions of such simulations (for
example, with a 10−14 °C change in atmospheric temperatures),
chaotic effects lead them to fully diverge in their atmospheric in-
ternal states within a few months (26). Such variations in the cli-
mate system subsequently accompany the underlying change in
climate state arising from external forcings. When a sufficient
number of individual simulations (typically ≥ 30) are performed in
this manner, their trends can be averaged together to directly
compute the FR (26). Here, this is done with the goal of resolving
the FR in sea level across the mid-20th century (1950–1975), the
altimeter era (1993–2018), the coming decades (2020–2045), and
the long-term (1950–2100). After the FRs are determined, the
distribution of its pattern correlations with individual ensemble
members is then derived and compared with analogous distribu-
tions derived from a control (i.e., unforced) simulation. When these
distributions become statistically distinct, the FR can be concluded
to have emerged. Notably, this is a distinct and somewhat more
sensitive definition of emergence than time series-based methods
examining the magnitude of trends relative to annual mean vari-
ance (22). However, the approach used here is arguably more
suitable to the science questions pertaining to the altimeter record
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Fig. 1. Regional sea-level trends from altimetry (millimeters year−1) from
1993 to mid-2018 (A) based on annual averages of raw AVISO estimates
(https://www.aviso.altimetry.fr/en/my-aviso.html) and (B) with the global
mean rate of rise removed. Also shown in A are the boundaries for the
Pacific, Atlantic, Indian, and Southern Oceans used for defining ocean basins
as defined in this analysis.
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Observed sea-level trends are known to arise from the combined
influences of internal variability due to natural variations aris-
ing within the climate system and the forced response (FR), de-
fined as the climate response driven by forcings external to the cli-
mate system, such as from natural (i.e., volcanic) or anthropogenic
aerosols, or from increases in greenhouse gas concentrations (14).
Studies aimed at disentangling the FR from internal variability on
regional scales have been previously attempted. In the Indo-Pacific
region, diagnostic assessments have largely attributed observed
trends to internal variability (15, 16). On a global scale, the relative
contributions of forced and internal variability remain somewhat
unclear, although many studies have concluded that altimeter-era
trends are likely dominated by internal variations (6, 14, 15, 17),
while others have suggested the possible emergence of the FR in
the Southern Ocean (7). Studies looking at regional time of emer-
gence based on multimodel archives show strong dependence on
region (2, 6) and a benefit in removing patterns of internal vari-
ability (11), but they have yet to identify a clear emergence of major
features. Considerable uncertainty surrounding these finding per-
sists, however, as contrasts within multimodel archives include both
internal variability and structural contrasts between models, with
few means of separating the two (6, 7). As such, estimates of internal
variability derived from multimodel ensembles may be inflated, as
the representation of internal variability in the archives is often poor
(18). Lastly, it is also not possible in these archives to assess the time-
varying character of the FR, since they include few ensemble
members for individual models, and it is often assumed that trends
through the 21st century are a suitable estimate, further intro-
ducing error into the estimation of FR emergence for short periods,
such as the satellite record, as discussed below.
From a purely empirical standpoint, the fact that the spatial

pattern of observed trends (Fig. 1) in many ways resembles the sea
surface temperature (SST) anomalies that accompany the El Niño–

Southern Oscillation and Pacific Decadal Oscillation (19) supports
the viewpoint that observed trends arise largely from internal var-
iability. It is also known that strong variations in those modes oc-
curred during the altimeter era (11, 20, 21), again suggesting a
strong role. A challenge for diagnostic assessments arises, however,
if the spatial pattern of internal modes resembles the pattern of
long-term change, as disentangling them during altimeter era re-
mains a challenge (21). To address this challenge, techniques for
assessing the time of emergence of climate signals from internal
variability have been explored for a range of variables, including
temperature (22), rainfall extremes (23), and sea level (6, 7). Often,
a pattern scaling approach is adopted, whereby the long-term trend,
such as spanning the 20th and 21st centuries, is used to estimate the
FR, as doing so provides a strong signal relative to the noise of
internal variability. This approach does not, however, provide a
means for estimating the time-varying character of the FR and
thereby, introduces error when applied to discrete time periods. In
the context of sea-level changes in the altimeter era, this assump-
tion is particularly problematic; strong transient changes in forcing
are known to occur during the era from changes in total anthro-
pogenic aerosol emissions, their regional distributions, and natural
forcings, such as those associated with the eruption of Mt. Pinatubo
in 1991, the effects of which persisted for at least a decade (24).
Climate models can be useful in estimating these effects; however,
multimodel archives also do not allow for direct estimation of the
FR on decadal timescales due to model structural contrasts (25).
Here, to address these challenges, an alternative approach is taken
using “large ensembles” (LEs) of climate model simulations.

Sea Level in Climate Model LEs
Climate models are powerful tools for disentangling the FR from
internal variability, and as such, they play an essential role in the
interpretation of short satellite records and the attribution of ob-
served changes (24, 25). In the past decade, multimodel archives
(27, 28) have been used extensively to address a range of climate
issues, including sea-level rise (2, 6, 14). More recently, LEs of
climate model simulations have been produced to allow for the
separation of forced and internal variability, where the FR can be
computed directly from the ensemble mean simulated trend across
a given time period, as random internal variability averages out.
LEs are created when multiple simulations using a single climate
model are driven by an estimate of imposed forcings (e.g., external
influences on climate, such as solar variability, volcanic and an-
thropogenic aerosols, and greenhouse gas emissions) initiated with
different initial conditions. Unlike multimodel archives, the use of a
single model eliminates any contribution of model structural un-
certainty to its ensemble spread. When extremely small perturba-
tions are made to the initial conditions of such simulations (for
example, with a 10−14 °C change in atmospheric temperatures),
chaotic effects lead them to fully diverge in their atmospheric in-
ternal states within a few months (26). Such variations in the cli-
mate system subsequently accompany the underlying change in
climate state arising from external forcings. When a sufficient
number of individual simulations (typically ≥ 30) are performed in
this manner, their trends can be averaged together to directly
compute the FR (26). Here, this is done with the goal of resolving
the FR in sea level across the mid-20th century (1950–1975), the
altimeter era (1993–2018), the coming decades (2020–2045), and
the long-term (1950–2100). After the FRs are determined, the
distribution of its pattern correlations with individual ensemble
members is then derived and compared with analogous distribu-
tions derived from a control (i.e., unforced) simulation. When these
distributions become statistically distinct, the FR can be concluded
to have emerged. Notably, this is a distinct and somewhat more
sensitive definition of emergence than time series-based methods
examining the magnitude of trends relative to annual mean vari-
ance (22). However, the approach used here is arguably more
suitable to the science questions pertaining to the altimeter record
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Fig. 1. Regional sea-level trends from altimetry (millimeters year−1) from
1993 to mid-2018 (A) based on annual averages of raw AVISO estimates
(https://www.aviso.altimetry.fr/en/my-aviso.html) and (B) with the global
mean rate of rise removed. Also shown in A are the boundaries for the
Pacific, Atlantic, Indian, and Southern Oceans used for defining ocean basins
as defined in this analysis.
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