

*USEIA

1400 million tons
of CO₂ emitted worldwide
from coal plants in 2017*
*USEIA

worldwide plastics production in 2017: 344 million tons*

*Association of Plastics Manufacturers

PETE HDPE V LDPE PP PS Other

CO₂ in the future: our choices

(a) Atmospheric CO₂ concentrations

(a) Atmospheric CO₂ concentrations

How does the Earth cope with CO₂?

timescale of the event

• The Carbon cycle at very long timescales

$$= \sigma T^4$$

Umbrella@Earth is an example of changes in "radiative forcing"

Feldman, D.R., Collins, W.D., Gero, P.J., Torn, M.S., Mlawer, E.J., and Shippert, T. R., Nature, 2015

Our CO₂ waste is warming the planet by radiative forcing

The role of our atmosphere: absorb incoming sunshine... and absorb outgoing earthshine

The role of our atmosphere: absorb incoming sunshine... and absorb outgoing earthshine

The role of our atmosphere: absorb incoming sunshine... and absorb outgoing earthshine

Changes in radiative forcing with time from various sources

Consequences

Global warming has increased global economic inequality

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

change in temperature from anthropogenic forcing

Global warming has increased global economic inequality

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

change in temperature from

Norway (NOR)

India (IND)

"Cool" countries benefit economically with warming

"Warm" countries experience cumulative losses with warming

Global warming has increased global economic inequality

Noah S. Diffenbaugh^{a,b,1} and Marshall Burke^{a,c,d}

9808-9813 | PNAS | May 14, 2019 | vol. 116 | no. 20

What are the FUTURE consequences?

nature climate change

NATURE CLIMATE CHANGE | VOL 8 | AUGUST 2018 | 723-729 |

Higher temperatures increase suicide rates in the United States and Mexico USA, Chile, Canada

Marshall Burke ^{1,2,3*}, Felipe González⁴, Patrick Baylis⁵, Sam Heft-Neal², Ceren Baysan⁶, Sanjay Basu⁷ and Solomon Hsiang^{3,8}

Higher temperatures increase suicide rates in the United States and Mexico USA, Chile, Canada

Marshall Burke^{® 1,2,3}*, Felipe González⁴, Patrick Baylis⁵, Sam Heft-Neal², Ceren Baysan⁶, Sanjay Basu³ and Solomon Hsiang³,8

Examine >600 million geolocated Tweets for depressive language...

nature climate change

NATURE CLIMATE CHANGE | VOL 8 | AUGUST 2018 | 723-729 |

ARTICLES

https://doi.org/10.1038/s41558-018-0222-x

We are more likely to commit suicide when it is hot...

Higher temperatures increase suicide rates in the United States and Mexico

OPEN Potentially Extreme Population **Displacement and Concentration** in the Tropics Under Non-Extreme

Received: 16 December 2015 Accepted: 21 April 2016 Published: 09 June 2016 Warming 2 degrees C

Solomon M. Hsiang^{1,2} & Adam H. Sobel^{3,4,5}

https://www.geographyrealm.com/latitude-longitude/

https://www.geographyrealm.com/latitude-longitude/

https://www.geographyrealm.com/latitude-longitude/

https://www.geographyrealm.com/latitude-longitude/

OPEN Potentially Extreme Population **Displacement and Concentration** in the Tropics Under Non-Extreme

Received: 16 December 2015 Accepted: 21 April 2016 Published: 09 June 2016 Warming 2 degrees C

Solomon M. Hsiang^{1,2} & Adam H. Sobel^{3,4,5}

Migration distance to keep the same median temperature (IF we keep to 2C rise globally)

Reference: Zurich to Les Diablerets = 191.1 km; 118.7 miles

GLOBAL SEA LEVEL

■Land underwater at high tide
■Buildings

Old projection for 2050

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp¹* & Benjamin H. Strauss ⁰

■Land underwater at high tide ■Buildings

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp^{1*} & Benjamin H. Strauss ⁰

■Land underwater at high tide ■Buildings

■Land underwater at high tide
■Populated area

Old projection for 2050

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

■Land underwater at high tide ■Buildings

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Scott A. Kulp^{1*} & Benjamin H. Strauss ⁰

■ Land underwater at high tide ■ Populated area

Old projection for 2050

■Land underwater at high tide ■Populated area

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

■ Land underwater at high tide ■ Populated area

Mediterranean Sea Alexandria E G Y P T 10 MILES

New projection for 2050

■Land underwater at high tide ■Populated area

The New York Times

By Denise Lu and Christopher Flavelle Oct. 29, 2019

阅读简体中文版 閱讀繁體中文版

Article Open Access Published: 29 October 2019

New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding

Summary

• The atmosphere is changing

- The atmosphere is changing
- The change is due to our combustion

- The atmosphere is changing
- The change is due to our combustion
- Radiative forcing connects the change to temperature

- The atmosphere is changing
- The change is due to our combustion
- Radiative forcing connects the change to temperature
- The Earth manages carbon on geological timescales

- The atmosphere is changing
- The change is due to our combustion
- Radiative forcing connects the change to temperature
- The Earth manages carbon on geological timescales
 There are urgent consequences

- The atmosphere is changing
- The change is due to our combustion
 - Average temperatures: rising
 - Inequality: rising
 - Sea level: rising, warming
 - Glaciers: retracting
 - Behavior: changing
 - Ice on the arctics: declining
 - Extreme weather: increasing
 - Biological consequences would take another seminar!

- Radiative forcing connects the change to temperature
- The Earth manages carbon on geological timescales

 There are urgent consequences

- The atmosphere is changing
- The change is due to our combustion
 - Average temperatures: rising
 - Inequality: rising
 - Sea level: rising, warming
 - Glaciers: retracting
 - Behavior: changing
 - Ice on the arctics: declining
 - Extreme weather: increasing
 - Biological consequences would take another seminar!

• Radiative forcing connects the change to temperature

The Earth manages carbon on geological timescales
 There are urgent consequences

• Mathematical models connect the atmosphere to our future changing climate and its consequences

"What keeps you up at night?"

calculus,

• • • •

Time

noise-induced tipping events...

for instance drought events causing sudden dieback of the Amazon rainforest....

Time

bifurcation tipping events

e.g., collapse of the thermohaline circulation in the Atlantic Ocean ...a critical level in the forcing is reached.

Boris Sakschewski⁶, Sina Loriani⁶, Ingo Fetzer^{1,2}, Sarah E. Cornell^{1,2}, Johan Rockström^{1,6}, Timothy M. Lenton³*

In the Atlantic Ocean, Subtle Shifts Hint at Dramatic Dangers

The warming atmosphere is causing an arm of the powerful Gulf Stream to weaken, some scientists fear.

By MOISES VELASQUEZ-MANOFF

In the Atlantic Ocean, Subtle Shifts Hint at Dramatic Dangers

The warming atmosphere is causing an arm of the powerful Gulf Stream to weaken, some scientists fear.

By MOISES VELASQUEZ-MANOFF

Atlantic Meridional Overturning Circulation

ARTICLE nature

12 APRIL 2018 | VOL 556 | NATURE | 191

Observed fingerprint of a weakening Atlantic Ocean overturning circulation

L. Caesar^{1,2}*, S. Rahmstorf^{1,2}*, A. Robinson^{1,3,4,5}, G. Feulner¹ & V. Saba⁶

Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation NATURE CLIMATE CHANGE | VOL 11 | AUGUST 2021 | 680-688 |

Niklas Boers ^{□ 1,2,3} ⊠

BRIEF COMMUNICATION

https://doi.org/10.1038/s41561-021-00699-z

L. Caesar^{1,2 ⋈}, G. D. McCarthy¹, D. J. R. Thornalley³, N. Cahill⁴ and S. Rahmstorf^{2,5}

NATURE GEOSCIENCE | VOL 14 | MARCH 2021 | 118-120 | www.nature.com/naturegeoscience

data..NOT model...
proxies for turnover of water in the AMOC

Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation NATURE CLIMATE CHANGE | VOL 11 | AUGUST 2021 | 680-688 |

Niklas Boers ^{1,2,3} ⊠

BRIEF COMMUNICATION

https://doi.org/10.1038/s41561-021-00699-z

Current Atlantic Meridional Overturning Circulation weakest in last millennium

L. Caesar 1,2 , G. D. McCarthy 1, D. J. R. Thornalley 1, N. Cahill and S. Rahmstorf 2,5

NATURE GEOSCIENCE | VOL 14 | MARCH 2021 | 118-120 | www.nature.com/naturegeoscience

data..NOT model...
proxies for turnover of water in the AMOC

"What keeps you up at night?"

Answer: calculus, and justice

extraction

extraction burn

extraction

extraction

profit - environmental justice

What are we going to do?